

DRAINS Core E-Learning Program

Dr. Benjamin Kus

Kustom Engineering Pty Ltd

Key Highlights:

- Covers 10 units delivered in 30 parts
- At your own time & pace, playback speed adjustable
- Suitable from new through to advanced users
- Includes advanced modelling techniques
- Over 12 hours of recorded material
- Up to 6 hours of additional exercises
- Certificate of completion with 15 hours CPD
- Access to DRAINS training license
- More material than live webinar & face to face workshops

2021

PROGRAM – E-Learning ARR Seminar

Duration	Details				
Estimated	Getting Started				
0.5 hours	Downloading resources				
	Installing DRAINS & Training License				
2.5 hours in	ARR Seminar Booklet - Introduction to ARR 2019				
4 parts	Topics covered include:				
	 Why do we have a new set of guidelines? 				
	Overview of past editions of ARR				
	ARR 2019 Online & overview of each Book				
	 Refresh on what is Hydrology, loss models and routing models 				
	ARR 2019 Temporal Pattern Regions and Rural Loss Model Zones				
	New ARR Probability Terminology				
	Ensembles of Storms				
	Understanding the ARR 2019 catchment terminology (TIA, DCIA, ICIA,				
	EIA, RA)				
	Watercom DRAINS application of the ARR 2019 catchment terminology				
	using:				
	Effective Impervious Areas (EIA)				
	Remaining Impervious Areas (RIA)				
	Pervious Areas (PA)				
	ARR Data Hub				
	Initial Loss Continuing Loss Data				
	 Understanding Rural Initial Loss vs Urban Initial Loss 				
	NSW OEH Specific Requirements (Probability Neutral Burst Initial Loss)				
	Median Preburst Depths				
	 Understanding Initial Loss Storm versus Initial Loss Burst 				
	Modelling Climate Change				
	Bureau of Meteorology 2016 IFD Rainfall Data				
	Comparing ARR 87 IFD to 2016 IFD at the location of the workshop				
	Challenges with ARR 2019				
	 Demonstration of ARR 2019 Regional Flood Frequency Estimation 				
	(RFFE) Model				
	Overview of Design Objectives				
	Safe Widths, Hazard Classifications, Freeboards				
	 Overview of applying ARR 2019 procedures with the DRAINS software 				

Exercise	Video	Parts	Details
Duration	Duration		
(hrs)	(hrs)		
0.5	0.5	1	Chapter 1 – Introduction to DRAINS
0.0	010	•	Workshop Materials and The DRAINS Interface
3-4	2	7	Chapter 2 – Assembling a DRAINS Model
			Exercise 2 – Taree
			ARR 2019 Initial Loss - Continuing Loss (IL-CL)
			Q&A of setting up ARR 2019 Rainfall & Loss Models
			Importing DXF, Entering Pits, Pipes and Catchments
			DRAINS Overflow Routes
			DRAINS design, analysis and interpretation of results
0.5	0.5	3	Chapter 3 – Large Drainage Networks with Open Channel
			Systems & Horton ILSAX Hydrological Model
			Large Drainage Networks with Open Channel Systems
			Storage Network Routing Module (SNRM) – RORB, RAFTS &
			WBNM Hydrological models in DRAINS
			The Horton ILSAX Hydrological Model
2.5	2.5	5	Chapters 4, 5 & 6 – Street Drainage System Design Procedures
			Premium Hydraulic Model (Caboolture 3a-c)
			Discussing the full unsteady flow equations, spitting surface
			flows, spilling over road crowns & identifying flood affected
			floor levels
			DRAINS Databases
			Setting pipe design limits, importing new pipe & box culverts
			Creating on-grade & sag pits using the HEC-22 Wizard & Pits
			Spreadsheet
			Customisation & setting safe design limits of overflow routes
			Design Considerations
			Possible Overdesign and Model Optimisation (Caboolture 4)
			Automatic estimation of pit pressure change coefficients,
			Pre-and post-processing spreadsheets,
			Survey data defining surface levels and other services,
			Importing information from spreadsheets
			Flood Mapping with the DRAINS Premium Hydraulic Model
			Extras on Property Drainage & Large Models

PROGRAM – DRAINS Core E-Learning

Exercise	Video	Parts	Details
Duration	Duration		
(hrs)	(hrs)		
1-3 depending on user experience	0.25	1	Chapter 7 – Simple model at location of choice – OPTIONAL EXERCISE Simple exercise providing participants with an excellent opportunity to practice and demonstrate their newly acquired skills suited for both first time users through to experienced DRAINS users. The exercise requires participants to set up ARR 2019 hydrology data and configure database design parameters for a model location of their choosing, after which they will proceed through the design analysis and optimisation of their model.
			for a summary review with recommendations for improvements.
1	1	2	Chapter 8 – On-Site Detention Systems
I	I	2	Presentation on Detention Basins
			Example (Sydney OSD)
3-4	3	5	Chapter 9 – Modelling Complex Detention Systems
3-4	5	5	Example - Medium-sized Basin System with Multi-Staged Outlets in Series Other Complex Detention Basin Examples with Multi- Staged Outlets in Parallel, Retention Chambers, High Early Discharge (HED) Modelling Pumps Modelling Diversion (Splitter) Pits & GPTs
0.75	0.75	1	Chapter 10 – Other Aspects of DRAINS
			Time steps DRAINS Pre-run checks & warnings Double Pipes & charged lines Water flowing backwards Sensitivity on catchment definitions Other optional exercises (A to Q)
0.10	0.10	1	Data Exchange with Civil Site Design
0.10	0.10		